

TATLIN. OBJECT

Распределенное децентрализованное объектное хранилище данных с поддержкой современных протоколов доступа, включая \$3. Подходит для гарантированного хранения и работы с многопетабайтным объемом данных.

Краткие характеристики

- Горизонтальное масштабирование до 100 узлов хранения
- Поддержка объектного доступа к данным
- Наличие SSD-кэша для ускорения работы с данными
- Поддержка протоколов \$3, HTTP(\$), gRPC
- Гибкие политики хранения данных
- Современный и простой HTML5 интерфейс управления
- Отказоустойчивость на уровне компонент и узлов хранения
- Возможность задать фактор репликации данных индивидуально для каждого контейнера
- Размещение объектов по узлам хранения с использованием схем избыточного кодирования
- Централизованное управление всей системой независимо от количества узлов хранения и их местоположения
- Синхронно-асинхронная репликация данных
- Поддержка мультитенантности
- Автоматизация управления через REST API

Архитектура

ТАТLIN.OBJECT — децентрализованная сеть хранения данных. Каждый узел наделен максимальной автономностью и делает все возможное, чтобы данные хранились корректно и в соответствии с заданной политикой. Такой подход позволяет масштабировать объем и производительность всей системы практически линейно, простым добавлением новых узлов хранения.

Каждый узел хранения использует все доступное локальное дисковое пространство для данных и их индексации. Избыточность и защита обеспечивается на уровне всей сети. Система TATLIN.OBJECT продолжит работать и сохранит целостность и доступ к данным после выхода из строя накопителей в соответствии с политиками хранения. Данные при этом будут эвакуированы на другие диски или узлы.

Часть узлов помимо хранения данных занимается мониторингом сети хранения и поддержанием актуального списка доступных узлов. Эта информация хранится в реплицируемой на все узлы специализированной базе данных. Таким образом, в системе нет единой точки отказа или центрального источника информации, ограничивающего производительность системы. Это позволяет размещать узлы в разных ЦОД в удаленных регионах без дополнительных операционных издержек.

Аппаратная платформа

В качестве аппаратной платформы используются вычислительные узлы на базе высокопроизводительных процессоров Intel Xeon. Аппаратные узлы способны масштабировать подсистему хранения для решения широкого круга задач. Каждый узел имеет 4 встроенных интерфейса 10/25 GbE для интеграции в современную сетевую инфраструктуру. Также предусмотрено расширение конфигурации дополнительным SSD-кэшем.

Свяжитесь с нами: sales@yadro.com www.yadro.com г. Москва ул. Рочдельская, 15, стр. 13 +7 495 540 50 55

ХАРАКТЕРИСТИКИ СИСТЕМЫ YADRO TATLIN.OBJECT

КОМПОНЕНТЫ	
Узлы хранения	От 4 до 100
Шаг расширения системы	1 узел хранения
Минимальное/максимальное количество накопителей в системе	24 / 1 200 x NL-SAS 16 T6
Минимальная/максимальная неразмеченная емкость на систему	384/19 200 T6

ХАРАКТЕРИСТИКИ УЗЛА ХРАНЕНИЯ	
Форм-фактор	2U
Процессоры	2
Память	256 ГБ RAM
Минимальное / максимальное количество накопителей под хранение данных	6 / 12 × NL-SAS 16 TB
Минимальное / максимальное количество накопителей под кэш	0 / 4 SATA SSD 1,92 TB
Порты ввода-вывода	 2 × 10/25 Гбит/с Ethernet для внутренней сети 2 × 10/25 Гбит/с Ethernet для доступа к данным 1 × 1 Гбит/с Ethernet для сети управления 1 × 1 Гбит/с Ethernet для локального сервисного доступа

УПРАВЛЕНИЕ И ДОСТУП	
Поддерживаемые протоколы доступа	 Поддержка S3, включая авторизацию Полная поддержка HTTP(S), включая загрузку и работу с диапазонами байтов для проигрывания видео Нативная поддержка gRPC
Управление системой	 Графический интерфейс управления (Web UI) Поддержка интеграции с LDAP Control API
Квотирование	Дисковое пространствоКоличество бакетовКоличество объектов

БЕЗОПАСНОСТЬ	
Разграничение прав доступа к данным	Настройка политик доступа ІАМ-пользователей и групп к ресурсам СХД
Политики хранения данных	Гибкие политики хранения на каждый контейнер с возможностью описания требований законов о персональных данных или корпоративных правил хранения информации
Парольные политики	Назначение и изменение параметров сложности паролей, срока их действия, блокировки учетных записей и др.
Защищенный доступ	Поддержка установки и управления TLS-сертификатами (для сети передачи данных, сети управления и внутренней сети)
Аудит действий администраторов	Запись действий администраторов в журнал аудита и возможность его экспортирования в SIEM-системы
Мультитенантность	Разделение СХД на изолированные наборы ресурсов с индивидуальным управлением

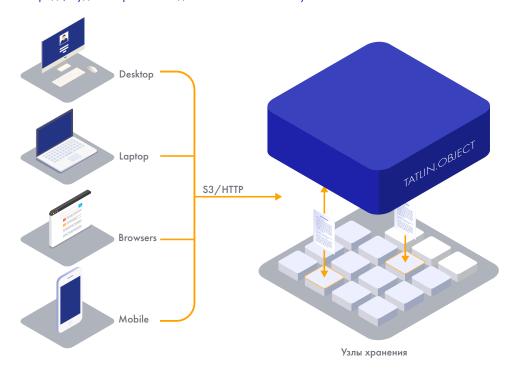
ЛИМИТЫ СИСТЕМЫ YADRO TATLIN.OBJECT*

ОБЩИЕ ЛИМИТЫ	
Количество объектов в системе	10 млрд, но при количестве >1 млрд наблюдается падение производительности
Количество объектов в контейнере	1 млрд, но при количестве >100 млн наблюдается падение производительности
Количество контейнеров в системе	Не ограничено
Количество реплик	Не превышающее количество узлов
Значения К и М в схеме Erasure Coding вида К.М	К ≤ 12; М ≤ 4 (поддерживаются не все возможные комбинации)
Количество локальных пользователей для Control Path	10 000
Количество LDAP-пользователей для Control Path после применения фильтров	1 000

	ЛИМИТЫ АППАРАТНОЙ ПЛАТФОРМЫ
Количество узлов в системе	От 4 до 100 шт.
Количество узлов на площадку	От 4 до 100 шт.

лимиты протоколов (gRPC / S3)		
Количество частей, загружаемых через MPU	2 млн (требует реализации на клиенте через SDK) / 10 тыс.	
Размер одной MPU-части	Определяется реализацией на клиенте через SDK / От 5 МБ до 5 ГБ, последняя часть может быть любого размера	
Максимальный размер загружаемого одиночного объекта	50 FB / 5 FB	
Максимальный размер загружаемого через MPU объекта	128 T6 / 50 T6	
Количество версий объекта (для S3)	1 тыс.	
Количество версионируемых бакетов (для S3)	Не ограничено	
Размер пользовательских метаданных на 1 объект (для gRPC)	192 MB	
Размер пользовательских тэгов на 1 объект (для S3)	128 UNICODE-символов для ключа тэга и 256 UNICODE-символов для значения тэга	
Количество пользовательских тэгов на 1 объект (для S3)	10 шт.	

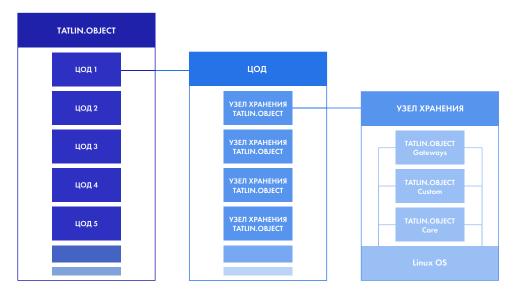
ХАРАКТЕРИСТИКИ СИСТЕМЫ YADRO TATLIN.OBJECT


	ИНТЕГРАЦИИ
Мониторинг	Шаблоны для Zabbix 5.x, 6.x; интеграция с корпоративными системами мониторинга (Prometheus)
Визуализация	Интеграция с системой визуализации данных Grafana (версии 9.1.5 и выше)
SDK	Open-source SDK для Go
Kubernetes	Поддержка ОСI для хранения контейнеров Kubernetes
Резервное копирование	Интеграция с ПО резервного копирования «Кибер Бэкап 16»
Управление данными	Интеграция с решениями по хранению электронного контента и документов «Кибер Инфраструктура 5.01», «Закрома.Хранение 1.013» и «Закрома.Архив 1.1»
Большие данные	Интеграция с ПО вычисления и обработки данных Arenadata Hadoop 3.2.4
	НАДЕЖНОСТЬ
Архитектура	 Масштабируемость за счет однотипных узлов хранения Отсутствие единой точки отказа, на каждом узле доступны все необходимые сервисы Поддержка самовосстановления системы после сбоев
Механизмы защиты данных	 На уровне каждого контейнера возможно задать уровень репликации данных Возможность размещения объектов по узлам с использованием технологии избыточного кодирования («erasure coding»)
Реакция системы на сбои	 Возможность работы в режиме деградации с потерей всех SSD, только с объектами на HDD При авариях система будет самовосстанавливаться и приводить фактическое хранение объектов в соответствие заданной политике по мере появления физической возможности Формат данных, пригодный для восстановления даже после тотальной аварии на системе
Сервисные операции	 Поддержка maintenance-режима для сервисного обслуживания Набор стандартных операций для замены компонент системы (включая HDD, SSD и т.д.) Механизм эвакуации данных с узла хранения
	ПРОИЗВОДИТЕЛЬНОСТЬ
Базовые принципы	 Эффективный движок хранения с раздельной обработкой мелких объектов и прозрачной потоковой обработкой больших объектов Накопители каждого узла используются раздельно, формируя шарды, на которых хранятся клиентские данные Высокая производительность каждого узла сети хранения и параллелизм обработки запросо множеством узлов Синхронно-асинхронная репликация, позволяющая получить высокую производительность системы и катастрофоустойчивость
Кэширование данных	Использование SSD+HDD-конфигурации с кэшированием чтения и записи
	ЛИЦЕНЗИРОВАНИЕ
Политика лицензирования	Лицензия с привязкой к полезной емкости системы с гранулярностью по ТБ
	ГАРАНТИЯ И ПОДДЕРЖКА

Примеры применения **применения**

Работа в режиме современного \$3-хранилища

Web и мобильные приложения могут напрямую загружать данные через протоколы S3 и HTTP(S) в TATLIN.OBJECT. Загруженные объекты автоматически могут быть распределены по регионам присутствия пользователей и раздаваться через кэширующие фронтенд-сервера, образуя, таким образом, CDN для проекта. При делегировании домена раздающих серверов на GeoDNS раздача будет производиться с ближайшего к потребителю фронтенд-сервера, который, в свою очередь, будет запрашивать данные с ближайшего узла TATLIN.OBJECT.

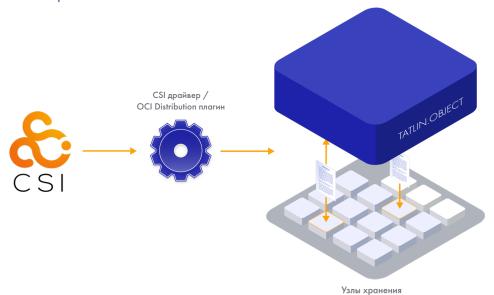


Примеры применения

Глобальная геораспределенная система хранения данных для размещения данных приложений, резервных копий и архивов

Компания или группа компаний могут использовать единую систему хранения, распределенную по нескольким площадкам. Данные пользователей и приложений располагаются на разных сайтах в соответствии с принятыми политиками хранения.

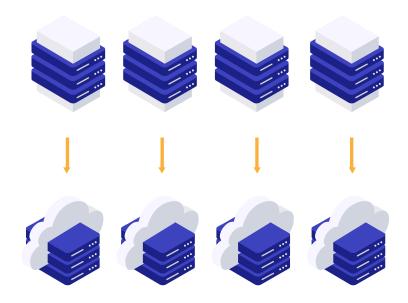
Альтернативно, одна группа узлов хранения может размещаться on-site, другие группы — в удаленных off-site-точках. Данные записываются на ближайший узел, а дальнейшая репликация происходит автоматически, в соответствии с политикой хранения, заданной для контейнера. Объект станет доступен сразу после попадания в систему, не дожидаясь репликации по всем площадкам.



Примеры применения

Хранилище образов Kubernetes

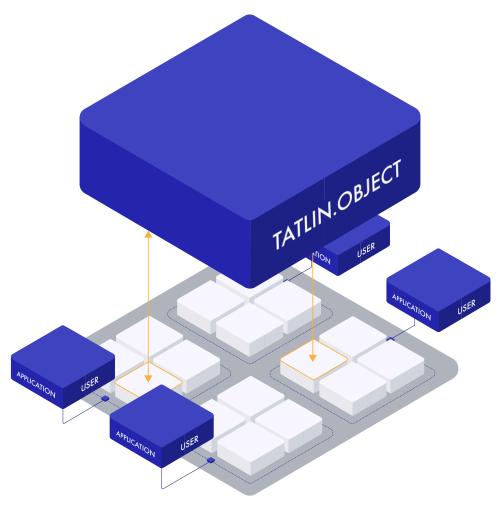
Существующие кластеры Kubernetes могут сразу переключиться на использование TATLIN.OBJECT для хранения и распространения образов контейнеров через стандартный OCI Distribution интерфейс. Для хранения образов можно применять политики, в том числе и с репликацией на другие площадки. Подключенные к общему хранилищу экземпляры OCI Distribution из разных ЦОД смогут пользоваться общей базой образов.



Примеры применения

Хранение артефактов разработки

- Универсальное хранилище для работы с исходным кодом, хранения сборок, тестовых артефактов и релизных версий приложений;
- Работа приложения с хранилищем идет по простому интерфейсу через вызовы API. Резервное хранение данных больше не является «головной болью» разработчиков приложения, т.к. СХД берет отказоустойчивое размещение объектов на себя;
- В отличие от традиционных подходов, при использовании TATLIN.OBJECT слой хранения не связан жестко со слоем обработки. Слой хранения масштабируется практически бесконечно и независимо от серверов приложения. Такую конструкцию легче проектировать и сопровождать.



Примеры применения **применения**

Предоставление услуги объектного хранения сервиспровайдерами

Сервис-провайдер может разместить узлы TATLIN.OBJECT на своих площадках и, разделив СХД на несколько наборов ресурсов (тенантов), предлагать от своего имени услугу по хранению клиентских данных в этих тенантах. Каждому потребителю услуги объектного хранения можно настроить свой адрес доступа к хранилищу и выполнять индивидуальное администрирование с установкой квот на объем хранимых данных, количество бакетов и объектов. Подсчет объема потребляемых ресурсов каждым тенантом возможен во внешней биллинг-системе посредством передачи в нее соответствующих метрик с узлов TATLIN.OBJECT.

